低压双全桥电机驱动

主要特点

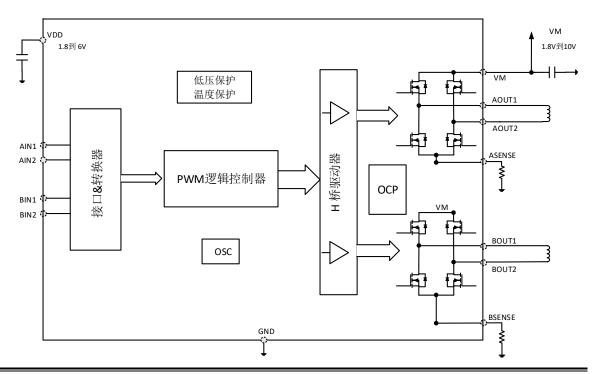
- 两个全桥驱动器,低输出导通电阻, 420mΩ(HS+LS)
- 2.8A 峰值电流能力
- 功率电源供电范围: 1.8V 到 10V
- 逻辑电源供电范围: 1.8V 到 6V
- IN1/IN2 全桥控制逻辑
- 待机模式下,功耗不超过 120nA@VM<6V
- QFN16L 封装(背部散热片),3mmx3mm
- 保护功能:欠压保护、过流保护、 短路保护以及过温保护

产品简述

MS31221 是一款双全桥电机驱动。它可应用于低电压及电池供电的运动控制场合。并且内置电荷泵来提供内部功率 NMOS 所需的栅驱动电压。

MS31221 可以提供最高 2.8A 的峰值电流, 其功率电源供电范围从 1.8V 到 10V, 逻辑电源供电范围从 1.8V 到 6V。

四个输入脚可以控制直流电机工作在正转、反转、 刹车以及滑行模式,也可以控制一个步进电机在全步和 半步模式。全桥由 IN1/IN2 逻辑控制,并且当所有的 xINx=0 超过 3ms 时,进入待机模式。

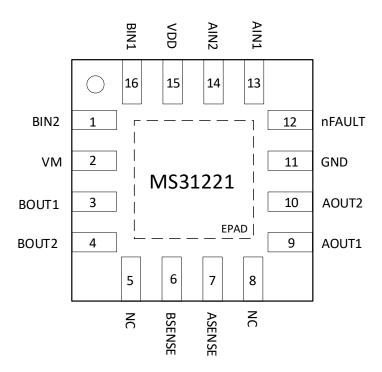

应用

- 摄像机
- 玩具
- 机器人
- 便携式医疗电子设备

产品规格分类

产品名称	封装形式	丝印名称
MS31221	QFN16	MS31221

内部框图



景目

1. 主要特点	1
2. 应用	1
3. 产品简述	1
4. 产品规格分类	1
5. 内部框图	1
6. 目录	2
7. 管脚图	3
8. 管脚说明	4
9. 极限参数	5
10. 推荐工作条件	5
11. 电气参数	6
11.1 电流功耗	6
11.2数字输入输出	6
11.3 输出功率管	6
11.4 保护电路	7
11.5 时序	7
12. 功能描述	8
12.1 全桥控制逻辑	
12.2 待机模式	
12.3 电源供电及输入管脚	
12.4 保护电路	
13. 典型应用图	
14. 封装外形图	10
15. 印章与包装规范	
16. 声明	
17. MOS电路操作注意事项	13

管脚图

管脚说明

管脚编号	管脚名称	管脚属性	管脚描述
1	BIN2	I	B 全桥 IN2 控制输入
2	VM	-	功率电源
3	BOUT1	0	B 全桥 OUT1 输出
4	BOUT2	О	B 全桥 OUT2 输出
5	NC	-	悬空
6	BSENSE	Ю	全桥 B 低边功率管源端,可接 SENSE 电阻
7	ASENSE	10	全桥 A 低边功率管源端,可接 SENSE 电阻
8	NC	-	悬空
9	AOUT1	0	A 全桥 OUT1 输出
10	AOUT2	0	A 全桥 OUT2 输出
11	GND	-	地
12	nFAULT	OD	错误指示
13	AIN1	ı	A 全桥 IN1 控制输入
14	AIN2	ı	A 全桥 IN2 控制输入
15	VDD	-	逻辑电路电源
16	BIN1	I	B 全桥 IN1 控制输入
EF	PAD	-	散热片,必须接地

极限参数

芯片使用中,任何超过极限参数的应用方式会对器件造成永久的损坏,芯片长时间处于极限工作 状态可能会影响器件的可靠性。极限参数只是由一系列极端测试得出,并不代表芯片可以正常工作在 此极限条件下。

参数	符号	额定值	单位
功率电源电压	VM	-0.3 ~ 14	V
逻辑电源电压	VDD	-0.3 ~ 6	V
过流保护值	IOCP	5	А
工作温度范围	TJ	-40 ~ 125	°C
储存温度范围	Tstg	-40 ~ 150	°C
xSENSE 电压		< 0.6	V
逻辑输入电压	VIN	6	V
ESD	НВМ	±6k	V

推荐工作条件

工作电源电压范围

参数	符号	最小	标准	最大	单位
功率电源电压范围	VM	1.8		10	V
逻辑电源电压范围	VDD	1.8		6	V

电气参数

VM=5V, VDD=3.3V。注意:没有特别规定,环境温度为Ta = 25℃±2℃。

电流功耗

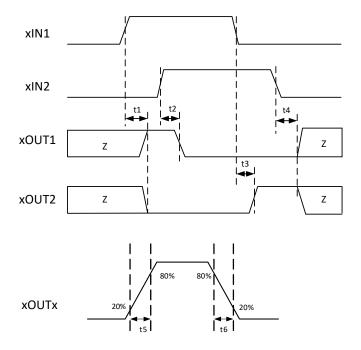
参数	符号	测试条件	最小值	典型值	最大值	单位
VM 待机电流	lvMstandby	AIN1=AIN2=BIN1=BIN2=0V 持续时间超过 3ms			0.1	μΑ
	I _{VM1}	xINx=1		420		μΑ
VM 工作电流	I _{VM2}	50kHz PWM		380		μΑ
VDD 待机电流	lvDDstandby	AIN1=AIN2=BIN1=BIN2=0V 持续时间超过 3ms			0.01	μΑ
	I _{VDD1}	xINx=1		410		μΑ
VDD 工作电流	I _{VDD2}	50kHz PWM		470		μΑ
待机检测时间	td _{standby}	AIN1=AIN2=BIN1=BIN2=0V		3		ms

数字输入输出

参数	符号	测试条件	最小值	典型值	最大值	单位
高电平输入	V _{in(H)}	VDD=3.3V	1.9			V
低电平输入	V _{in(L)}	VDD=3.3V			1.2	V
输入迟滞	V _{in(hys)}	VDD=3.3V		0.4		V
下拉电阻	R_{pd}			270		kΩ
PWM 频率	f_{pwm}				250	kHz

输出功率管

参数	符号	测试条件	最小值	典型值	最大值	单位
上管导通电阻	R_{dsh}	VM=5V,lout=500mA		210		mΩ
下管导通电阻	R _{dsl}	VM=5V,lout=500mA		210		mΩ
输出关闭漏电流	I _{leak}	xlNx=0, xOUTx 接 VM 或 GND	-1		1	μΑ


保护电路

参数	符号	测试条件	最小值	典型值	最大值	单位
VDD 欠压保护	Vuvloh	VDD 上升		1.75		V
VDD 欠压保护	Vuvlol	VDD 下降		1.6		V
过流保护	l _{ocp}			5		Α
过流保护检测时间	t _{ocp_d}			2		μs
过流保护自启动关闭时间	t _{ocp_r}			2.8		ms
		温度上升		165		°C
过温保护	Totpl	温度下降		137		°C
过温保护迟滞	Totphys			28		°C

时序

VM=5V, VDD=3.3V, 输出空载

符号	测试条件	最小值	最大值	单位
t1	xlN2=0, xlN1 从 0 变到 1,输出 xOUT1 从 Z 态变高延时		200	ns
t2	 xIN1=1, xIN2 从 0 变到 1, 输出 xOUT1 从高变低延时		200	ns
t3	xlN2=1, xlN1 从 1 变到 0,输出 xOUT2 从低变高延时		200	ns
t4	xlN1=0, xlN2 从 1 变到 0,输出 xOUT2 从高变 Z 态延时		200	ns
t5	输出上升沿时间		200	ns
t6	输出下降沿时间		160	ns

功能描述

MS31221 是一款低压、两个全桥驱动器,可以用来驱动一个步进电机或者两个直流电机。

全桥控制逻辑

MS31221 采用 IN1/IN2 逻辑控制全桥。每个全桥独立控制。

其真值表如下:

xIN1	xIN2	xOUT1	xOUT2
0	0	Z	Z
0	1	L	Н
1	0	Н	L
1	1	L	L

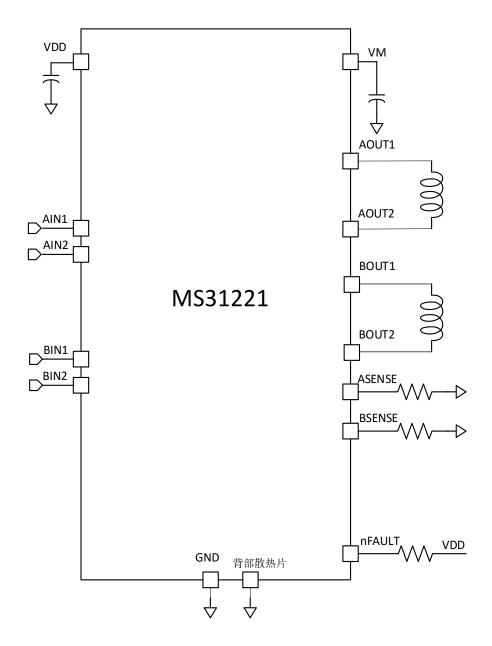
待机模式

MS31221 提供待机模式,当 AIN1=AIN2=BIN1=BIN2=0 的时间超过 3ms 时,芯片将进入待机模式。 待机模式下,芯片所有模块都会被关闭。若 xINx 中有一个脚被拉高,芯片将从待机模式进入正常工作 模式。

电源供电及输入管脚

VDD 和 VM 可以不按照顺序上电或者下电。当 VDD 下电后,芯片会进入低功耗状态,此时 VM 只消耗很小的电流。如果 VM 电压在 1.8V 到 6V 之间,可以从外部将 VDD 和 VM 接一起进行供电。

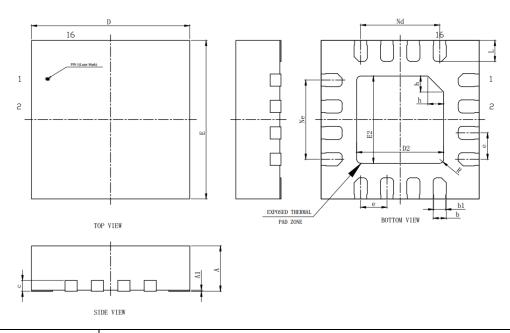
保护电路


MS31221 提供完备的保护电路,包括欠压保护、过流保护、过温保护等。

MS31221 针对每个功率 MOS 做了独立的过流保护:包括对电源、对地以及输出间短路。当触发过流保护时,芯片会关闭相应的全桥输出 2.8ms 左右,再重新开启,确保芯片不会因过流而损坏。

在保护状态时, nFAULT 脚会被拉低。

典型应用图



注意: MS31221 具有背部散热片,应用时必须接地。

封装外形图

QFN16 (03X03) (背部带散热片)

	尺寸 (毫米)			
符号	最小	典型	最大	
А	0.80	0.85	0.90	
A1	0	0.02	0.05	
b	0.20	0.25	0.30	
b1		0.23REF		
С		0.203REF		
D	2.90	3.00	3.10	
D2	1.60	1.65	1.70	
e		0.50BSC		
Nd		1.50BSC		
Ne		1.50BSC		
E	2.90	3.00	3.10	
E2	1.60	1.65	1.70	
L	0.35	0.40	0.45	
h	0.25	0.30	0.35	
R	0.075REF			

印章与包装规范

1. 印章内容介绍

MS31221 XXXXXXX

产品型号: MS31221 生产批号: XXXXXXX

2. 印章规范要求

采用激光打印,整体居中且采用 Arial 字体。

3. 包装规范说明

型号	封装形式	只/卷	卷/盒	只/盒	盒/箱	只/箱
MS31221	QFN16	4000	1	4000	8	32000

声明

- 瑞盟保留说明书的更改权,恕不另行通知!客户在下单前应获取最新版本资料,并验证相关信息 是否完整。
- 在使用瑞盟产品进行系统设计和整机制造时,买方有责任遵守安全标准并采取相应的安全措施, 以避免潜在失败风险可能造成的人身伤害或财产损失!
- 产品提升永无止境,本公司将竭诚为客户提供更优秀的产品!

MOS电路操作注意事项

静电在很多地方都会产生,采取下面的预防措施,可以有效防止 MOS 电路由于受静电放电的影响而引起的损坏:

- 1、操作人员要通过防静电腕带接地。
- 2、设备外壳必须接地。
- 3、装配过程中使用的工具必须接地。
- 4、必须采用导体包装或抗静电材料包装或运输。

+86-571-89966911

杭州市滨江区伟业路 1 号 高新软件园 9 号楼 701 室

http://www.relmon.com