高速、四通道差分线路驱动器

产品简述

MS2574/MS2574T/MS2574SS是一款高速、低功耗的四通道差分线路驱动芯片,用于平衡或非平衡的数字数据传输。三态输出可驱动双绞线或双芯平行线的传输线路,并在断电情况下处于高阻抗状态。

四个驱动器均具有使能功能,该功能提供了两种可选输入: 高电平有效使能(G)和低电平有效使能(GN)输入。

MS2574 采用 SOP16 封 装, MS2574T 采用 TSSOP16 封 装, MS2574SS采用SSOP16封装。

- 最高传输速率: 50MHz
- 互补输出
- 电源电压: 3.0V-5.5V
- 关断时三态输出
- 输出失效防护电路
- 总线端口 ESD: ±18kV (HBM)
- SOP16、TSSOP16、SSOP16 封装

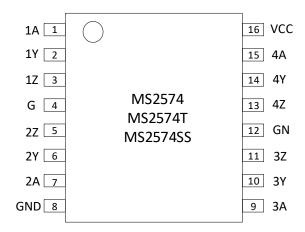
应用

- 可靠性汽车应用
- 工厂自动化
- 电机编码器
- 交流和伺服电机驱动器

产品规格分类

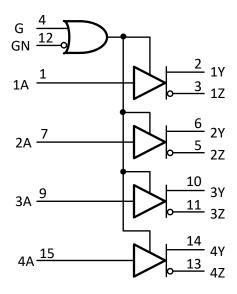
产品	封装形式	丝印名称
MS2574	SOP16	MS2574
MS2574T	TSSOP16	MS2574T
MS2574SS	SSOP16	MS2574SS

SOP16



TSSOP16

SSOP16


管脚图

管脚说明

管脚编号	管脚名称	管脚属性	管脚描述
1	1A	I	RS422 驱动器 1 数据输入
2	1Y	0	驱动器1同相输出
3	1Z	0	驱动器1反相输出
4	G	1	使能同相信号输入端
5	2Z	0	驱动器 2 反相输出
6	2Y	0	驱动器 2 同相输出
7	2A	1	RS422 驱动器 2 数据输入
8	GND	-	地
9	3A	1	RS422 驱动器 3 数据输入
10	3Y	0	驱动器 3 同相输出
11	3Z	0	驱动器 3 反相输出
12	GN	1	使能反相信号输入端
13	4Z	0	驱动器 4 反相输出
14	4Y	0	驱动器 4 同相输出
15	4A	1	RS422 驱动器 4 数据输入
16	VCC	-	电源

内部框图

功能表

输入	使能		输出		
A	G	GN	Υ	Z	
Н	Н	х	Н	L	
L	Н	Х	L	Н	
Н	Х	L	Н	L	
L	Х	L	L	Н	
Х	L	Н	Z	Z	

极限参数

芯片使用中,任何超过极限参数的应用方式会对器件造成永久的损坏,芯片长时间处于极限工作 状态可能会影响器件的可靠性。极限参数只是由一系列极端测试得出,并不代表芯片可以正常工作在 此极限条件下。

参数		 符号	额定值	单位
供电电压		Vcc	2.5 ~ 6.0	V
最大输入电压		V _{IN-MAX}	6.0	V
最大输出关断(高阻)状态电压		V _{OZ-MAX}	5.5	V
焊接温度(10s)		Tsolder	260	°C
存储温度		T _{STG}	-65 ~ +1 50	°C
ESD(HBM)(输出 Y、Z 脚)	IBM)(输出 Y、Z 脚)		±18	kV
	SOP16	_	77.97	
结温对环境温度的热阻	TSSOP16	R _{θJA}	101.324	°C/W

推荐工作条件

参数	符号	最小值	典型值	最大值	单位
供电电压	V _{cc}	3		5.5	V
高电平输入电压	ViH	2			V
低电平输入电压	VıL			0.8	V
工作温度	TA	-40		125	°C

电气参数

除非另外说明, T_A=25℃。

参数	符号	测试	条件	最小值	典型值	最大值	单位
44 > 410 E		V _{CC} =5V, I _I =-18mA			-0.8	-1.2	
输入钳位电压	Vıĸ	V _{CC} =3.3V, I _I =-18m	А		-0.8	-1.2	V
		V _{CC} =5V, I _{ОН} =-20m	A	4.5	4.7		
高电平输出电压	V _{OH}	V _{CC} =3.3V, I _{OH} =-20	mA	2.7	2.9		V
		Vcc=5V, lot=20mA	.		0.2	0.4	
低电平输出电压	V _{OL}	Vcc=3.3V, loL=20m	nA		0.2	0.4	V
关断态 (高阻态)			V ₀ =0.5V				
输出电流	loz	Vcc=3.3V~5V	V ₀ =2.5V			20	μΑ
高电平输入电流	I _{IH}	V _{CC} =3.3V~5V, V _I =3	V _{CC} =3.3V~5V, V _I =2.7V			20	μΑ
低电平输入电流	I _{IL}	V _{CC} =3.3V~5V, V _I =0	V _{CC} =3.3V~5V, V _I =0.4V			-20	μΑ
		Vcc=3.3V~5V, Y	Z短接	30		150	
输出短路电流 ¹ los		Vcc=3.3V~5V,Y或Z对GND短接		30		150	mA
		Vcc=5.5V,输入低电平, 所有输出悬空					
供电电流	Icc				70	100	
		Vcc=3.0V,输入值	 氐电平,				μΑ
		所有输出悬空			40	70	

注 1: 最多只能有一个输出端短路,且短路持续时间不应超过 1s。

开关特性参数

参数	符号	测试条件		典型值	单位
传输延迟时间(输出低到高电平)	t PLH			6	
传输延迟时间(输出高到低电平)	t _{PHL}	C∟=30pF,断开 S1 和 S2		6	ns
启动时间(输出高电平)	t _{РZН}		R _L =75Ω	9	
启动时间(输出低电平)	t _{PZL}	C _L =30pF	R _L =180Ω	9.5	ns
关断时间(由高电平关断)	t _{PHZ}			9	
关断时间(由低电平关断)	t PLZ	CL=10pF,合上 S1 和 S2		11	ns
同相反相输出斜交时间	tskew	C _L =30pF,断	开 S1 和 S2	1	ns

参数	符号	测试条件	典型值	单位
		Vcc=5.0V,Y 和 Z 接 100Ω 电阻,Cι=10pF	2.3	
输出上升沿时间	t _R	Vcc=3.3V,Y 和 Z 接 100Ω 电阻,Cι=10pF	, C _L =10pF 3.5	
		Vcc=5.0V,Y 和 Z 接 100Ω 电阻,Cι=10pF	2.5	
输出下降沿时间	t⊧	Vcc=3.3V,Y 和 Z 接 100Ω 电阻,Cι=10pF	4.0	ns

- 1. 测试条件是 Vcc=3.3V~5V,T_A=25°C。
- 2. 除非特别说明,每个输出端的关断态即高阻态。
- 3. 测试电路如图 1, 其中 C_L包括了探针和插座的寄生电容;输入信号由波形发生器提供,且输入信号应当满足: PRR≤1MHz, Z_O≈50Ω, t_R≤15ns, t_F≤6ns;每个使能端都是单独测试的。

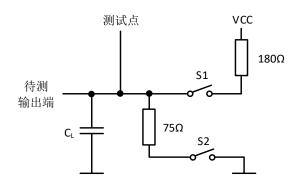


图1. 开关特性测试电路

4. 测试传输延时时间和输出斜交时间。需要断开 S1 和 S2,对应的测试波形如图 2。

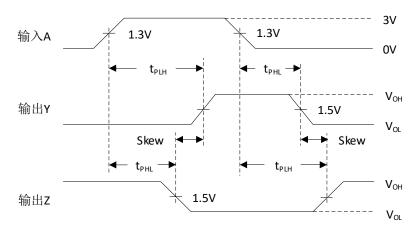


图 2. 传输延时时间和输出斜交时间

5. 测试启动时间和关断时间。注意 S1 和 S2 状态有所不同,请参考上方的表格和图 3,分别调整开关状态并测试。其中,波形 1 表示该驱动器在输入端和使能端信号的共同作用下,输出保持低电平状态,除非使能端控制驱动器进入高阻态。波形 2 表示该驱动器在输入端和使能端信号的共同作用下,输出保持高电平状态,除非使能端控制驱动器进入高阻态。

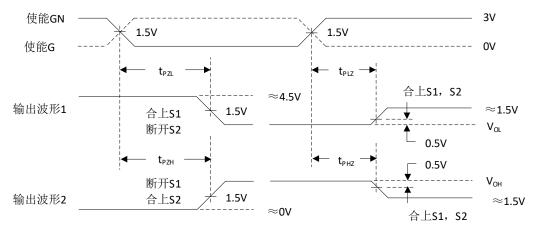
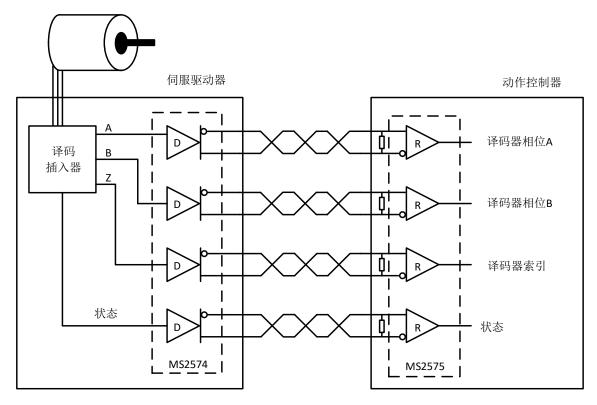
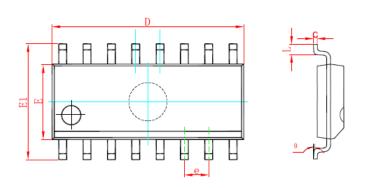
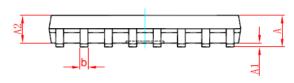



图 3. 启动时间和关断时间波形

典型应用图

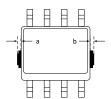

下图展示了一种用于伺服系统的译码电路。

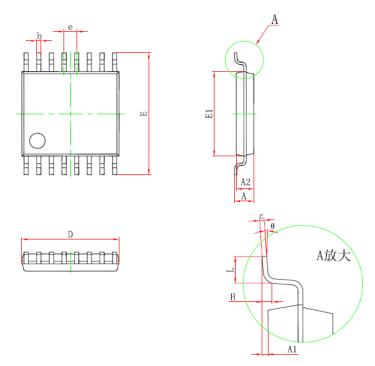


注意:将芯片尽可能放置在靠近接口的位置上,这样可以减少连线电阻以降低总线的信号反射。

封装外形图

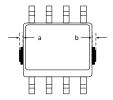
SOP16

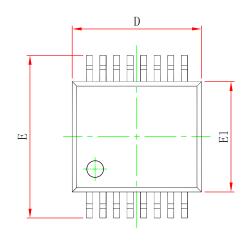


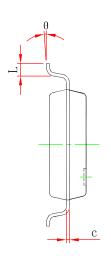

	尺寸(毫米)	尺寸(英寸)		
符号	最小值	最大值	最小值	最大值	
А	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.007	0.010	
D	9.800	10.200	0.386	0.402	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
e	1.270	(BSC)	0.050(BSC)		
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

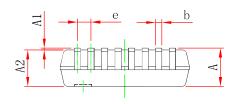
注: 在封装尺寸外,允许 a、b 同时有最大 0.15mm 的废胶尺寸。

示意图如下:以 SOP8 封装为例

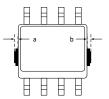

TSSOP16


/r/r 🖂	尺寸(毫米)	尺寸 (英寸)		
符号	最小值	最大值	最小值	最大值	
D	4.900	5.100	0.193	0.201	
E	6.250	6.550	0.246	0.258	
b	0.190	0.300	0.007	0.012	
С	0.090	0.200	0.004	0.008	
E1	4.300	4.500	0.169	0.177	
А	-	1.200	-	0.047	
A2	0.800	1.000	0.031	0.039	
A1	0.050	0.150	0.002	0.006	
e	0.650(BSC)		0.026(BSC)		
L	0.400	1.270	0.016	0.050	
Н	0.250(TYP)		0.010(TYP)		
θ	1°	7°	1°	7°	


注: 在封装尺寸外,允许 a、b 同时有最大 0.15mm 的废胶尺寸。


示意图如下:以 SOP8 封装为例

SSOP16



forter [7]	尺寸(毫米)	尺寸(英寸)		
符号	最小值	最大值	最小值	最大值	
А	-	2.000	-	0.079	
A1	0.050	-	0.002	-	
A2	1.650	1.850	0.065	0.073	
b	0.220	0.380	0.009	0.015	
С	0.090	0.250	0.004	0.010	
D	5.900	6.500	0.232	0.256	
E	7.400	8.200	0.291	0.323	
E1	5.000	5.600	0.197	0.220	
е	0.650	(BSC)	0.026(BSC)		
L	0.550	0.950	0.022	0.037	
θ	0°	8°	0°	8°	

注: 在封装尺寸外,允许 a、b 同时有最大 0.15mm 的废胶尺寸。

示意图如下: 以 SOP8 封装为例

印章与包装规范

1. 印章内容介绍

产品型号: MS2574、MS2574T、2574SS

生产批号: XXXXXXX

2. 印章规范要求

采用激光打印,整体居中且采用 Arial 字体。

3. 包装规范说明

型号	封装形式	颗/卷	卷/盒	颗/盒	盒/箱	颗/箱
MS2574	SOP16	4000	1	4000	8	32000
MS2574T	TSSOP16	3000	1	3000	8	24000
MS2574SS	SSOP16	2000	1	2000	8	16000

声明

- 瑞盟保留说明书的更改权,恕不另行通知!客户在下单前应获取最新版本资料,并验证相关信息 是否完整。
- 在使用瑞盟产品进行系统设计和整机制造时,买方有责任遵守安全标准并采取相应的安全措施, 以避免潜在失败风险可能造成的人身伤害或财产损失!
- 产品提升永无止境,本公司将竭诚为客户提供更优秀的产品!

MOS电路操作注意事项

静电在很多地方都会产生,采取下面的预防措施,可以有效防止 MOS 电路由于受静电放电的影响而引起的损坏:

- 1、操作人员要通过防静电腕带接地。
- 2、设备外壳必须接地。
- 3、装配过程中使用的工具必须接地。
- 4、必须采用导体包装或抗静电材料包装或运输。

+86-571-89966911

杭州市滨江区伟业路 1 号 高新软件园 9 号楼 701 室

http://www.relmon.com